Eco-Flight Activities by Japanese Operators

Japan-US Aviation Environmental Workshop
Fukutake Hall University of Tokyo
29 November 2017

Keiichi Tamura
All Nippon Airways
B787 Technical Pilot, Dr. Eng.
Fundamentals of PBN (RNAV / RNP)
Kinds of Navigation

- **Conventional**
 - Route consists of Navigation Radio Station (VOR, DME, NDB, ILS and etc)

- **PBN (Performance Based Navigation)**
 - RNAV or RNP
 - Route consists of waypoints, which are independent from Navigation Radio Station
Conventional vs. PBN
Fundamentals of PBN (RNAV / RNP)

RNAV defined in PBN

RNP (Required Navigation Perf)
Onboard perf. monitoring and alerting system required

- **En-Route**
 - RNP4
 - RNP2

- **Terminal**
 - RNP1

- **Approach**
 - RNP_ APCH
 - RNP AR APCH

RNAV (Area Navigation)
Onboard perf. monitoring and alerting system **NOT** required

- **En-Route**
 - RNAV10
 - RNAV5

- **Terminal**
 - RNAV2
 - RNAV1
Fundamentals of PBN (RNAV / RNP)

RNAV defined in PBN

<table>
<thead>
<tr>
<th></th>
<th>RNP</th>
<th>RNAV</th>
</tr>
</thead>
</table>
| ① Terminal | RNP 1 | RNAV 1
| | | RNAV 2 |
| ② En-Route | RNP 2 | RNAV 5
| | RNP 4 | RNAV 10 |
| ③ Approach | RNP APCH | N/A
| | RNP AR APCH | |
What is RNP XX / RNAV XX

For RNP APCH, XX = 0.3 NM
For RNP AR APCH, XX \leq 0.3 NM
What is “Onboard perf. monitoring and alerting system”

- ANP: 95% Navigation Accuracy of FMS Position.
- XTK Error: Deviation from the intended route.

For example:
In case GPS signal invalid...
The ANP increases and exceeds the RNP, then Message(Alert) is shown in cockpit.
Conventional vs. PBN (Odate Noshiro)
Conventional vs. PBN (Saga)
Summary of PBN

● Improves Flight Efficiency
 ✓ Shortest route results in less CO2 emission and shorten flight time

● Improves Flying Rate
 ✓ Instrument approach for runways without navaids, which allows to land with worse weather conditions

● Improves Air Traffic Control
 ✓ Separations between aircrafts can be reduced, which results in increment of flights
Fundamentals of GLS (GBAS Landing System)
Kinds of Approach

Non-Precision
- VOR
- LOC / LDA
- Circling

Precision
- ILS (LOC, G/S)

RNAV / RNP
- RNP AR

Fundamentals of GLS (GBAS Landing System)
Fundamentals of GLS (GBAS Landing System)

ILS (LOC, G/S)

GLS (GBAS)

Localizer

Glide Slope

GPS

GBAS
Fundamentals of GLS (GBAS Landing System)

ILS (LOC, G/S)

GLS (GBAS)
RNP to xLS (ILS vs. GLS)

- **CAT-III vs. CAT-I**
 - Currently, GLS is only available for CAT-I (DH ≥ 200ft, 550m \leq RVR)
 while ILS is available for CAT-III (DH=0ft, 50m \leq RVR < 175m)
 - In future, CAT-III GLS will be available

- **Flexible Final Approach**
 - Final approach course for GLS can be shorten than one for ILS, which contributes to establishment of flexible approach course with RNP
RNP to xLS (RNP AR vs. GLS)

- **Non-Precision vs. Precision**
 - RNP AR approach is non-precision approach, and can’t be used for bad weather conditions such as CAT-I(-II,-III)
 - GLS is precision approach, and autoland is available

- **No special training required for xLS**
 - RNP AR approach requires special authorization, which needs flight crew training with simulator every year. On the other hand, GLS doesn’t require additional simulator training
Summary of GLS

- **Similar to ILS**
 - Flight crew procedures and cockpit indications are almost identical to ILS

- **Waiting for CAT-II/III Operation**
 - CAT-I is available, but hope to implement CAT-II/III operation in near future

- **Improves Flying Rate**
 - Runways, that can’t equip ILS, may be able to equip GLS, which improves possibility of landing in bad weather conditions