Eco-Flight Activities by Japanese Operators

Japan-US Aviation Environmental Workshop Fukutake Hall University of Tokyo 29 November 2017

Keiichi Tamura All Nippon Airways B787 Technical Pilot, Dr. Eng.

Fundamentals of PBN (RNAV / RNP)

Kinds of Navigation

Conventional

 Route consists of Navigation Radio Station (VOR, DME, NDB, ILS and etc)

PBN (Performance Based Navigation)

- ✓ RNAV or RNP
- Route consists of waypoints, which are independent from Navigation Radio Station

Conventional vs. PBN

RNAV defined in PBN

RNP (Required Navigation Perf)
Onboard perf. monitoring and alerting system required

RNAV (Area Navigation)
Onboard perf. monitoring and alerting system **NOT** required

En-Route

•<u>RNP4</u> •RNP2 **Terminal**

•RNP1

Approach

•<u>RNP</u> <u>APCH</u> •<u>RNP AR</u> <u>APCH</u> **En-Route**

•RNAV10 •RNAV5 **Terminal**

•RNAV2

•RNAV1

RNAV defined in PBN

	RNP	RNAV
① Terminal	RNP 1	RNAV 1 RNAV 2
② En-Route	RNP 2 RNP 4	RNAV 5 RNAV 10
③ Approach	RNP APCH RNP AR APCH	N/A

What is RNP XX / RNAV XX

For RNP APCH, XX = 0.3 NMFor RNP AR APCH, $XX \leq 0.3 \text{ NM}$

What is "Onboard perf. monitoring and

GS 370 TAS 350 RANGE 3410 / 35 40

alerting system"

Conventional vs. PBN (Odate Noshiro)

Conventional vs. PBN (Saga)

Summary of PBN

Improves Flight Efficiency

 Shortest route results in less CO2 emission and shorten flight time

Improves Flying Rate

Instrument approach for runways without navaids, which allows to land with worse weather conditions

Improves Air Traffic Control

 Separations between aircrafts can be reduced, which results in increment of flights

Fundament s of GLS

Kinds of Approach

ILS (LOC, G/S)

ILS (LOC, G/S)

140 **—** GS 185 TAS 180 WA2A 1540.9z 0.8 NI TERR ADF L 220.0 ADF R PWT

GLS (GBAS)

RNP to xLS (ILS vs. GLS)

- CAT-III vs. CAT-I
 - ✓ Currently, GLS is only available for CAT-I (DH≥200ft, 550m≤RVR) while ILS is available for CAT-III (DH=0ft, 50m≤RVR<175m)</p>
 - ✓ In future, CAT-III GLS will be available

Flexible Final Approach

✓ Final approach course for GLS can be shorten than one for ILS, which contributes to establishment of flexible approach course with RNP

RNP to xLS (RNP AR vs. GLS)

Non-Precision vs. Precision

- RNP AR approach is non-precision approach, and can't be used for bad weather conditions such as CAT-I(-II,-III)
- GLS is precision approach, and autoland is available

No special training required for xLS

✓ RNP AR approach requires special authorization, which needs flight crew training with simulator every year. On the other hand, GLS doesn't require additional simulator training
✓ ANA

Summary of GLS

Similar to ILS

Flight crew procedures and cockpit indications are almost identical to ILS

Waiting for CAT-II/III Operation

CAT-I is available, but hope to implement CAT-II/III operation in near future

Improves Flying Rate

Runways, that can't equip ILS, may be able to equip GLS, which improves possibility of landing in bad weather conditions

