Japan-US Aviation Environmental Workshop Fukutake Hall, University of Tokyo, 29 November 2017

A Flight Procedure Design Method for RNP to xLS with Shallow Segment

Sonosuke Fukushima, Ryota Mori, Shinji Saitoh

Electronic Navigation Research Institute, National Institute of Maritime, Port and Aviation Technology

Outline

- 1. Background
- 2. "RNP to xLS" Procedure Design Assumption & Method
- **3. Full-Flight Simulator Trials**
- 4. Summary

1. Advantage of RNP to xLS

US-Japan Aviation Environmental Workshop, University of Tokyo, 29 Nov. 2017

1. Glideslope Intercept Altitude

Intermediate Segment used barometric altitude while final approach segment depends on geometric altitude.

1. Temperature Correction

International Standard Atmosphere (ISA)

Temp 15°C at Mean Sea Level, Lapse rate ~ -2°C per 1,000 ft

US-Japan Aviation Environmental Workshop, University of Tokyo, 29 Nov. 2017

1. Difficulty of Procedure Design

GS should be captured after capturing LOC.
For short intermediate design, GS capture may happen before LOC capture.

1. Shallow segment

FAA PARC reported RNP to xLS procedure design using Shallow Intermediate Segments

- > Improving flight efficiency: Long level segment decrease it.
- Considering capture condition and guideline.

Discussing more detail, and optimum design method

2. Assumption of procedure design

1. ARINC 424 compliance

424-19 (2008)

- * "All such approach procedures must begin at the FACF"
- "The rules of coding GLS approach procedure are understood to be identical to those of LOC coding"

424-20 (2011)

"The final approach coding of GLS instrument approach procedures does not require the coding of a FACF waypoint"

ARINC 424-19 specification are supposed

All type of aircraft does not support 424-20

2. Hottest day temperature $\Box \Delta ISA = 30^{\circ}C$ 113°F

MSL

2. Assumption of procedure design

3. Glideslope & Localizer capture timing

Type A aircraft allows Glideslope capture before Localizer capture Type B aircraft inhibits Glideslope capture before Localizer capture

Type A aircraft are supposed <

4. Glideslope pointer exceed one dot

Pilots need a buffer for pushing APP switch

5. Glideslope capture boundary rightarrow a half dot

2. Procedure design

2. Deviation & Capture points

2. Calculation of ANGmax

US-Japan Aviation Environmental Workshop, University of Tokyo, 29 Nov. 2017

3. Simulator Trials

- Standard procedures based on ARINC 424 specification were coded by NAV database provider
- FMS vender checked the database quality, and converted to FMS loadable database
- Flight simulations with variable temp were conducted in ANA flight training center

3. Comparison with **FFSIM**

Horizontal distance to FAF along RF course (NM)

US-Japan Aviation Environmental Workshop, University of Tokyo, 29 Nov. 2017

3. Comparison with FFSIM

CACLULATED

Horizontal distance to FAF along RF course (NM)

3. Altitude Variation before FAF

Altitude Variation is affected by the Flap Extension, and not exceed +20 FT even severe turbulence condition

4. Intermediate LEN .vs. ANG

Additional assumption By FFSIM experiments

+50FT (20FT + Margin)

Direct Proportion LEN .vs. ANG Inverse Proportion

FAF ALT. vs. ANG

5. Summary

- Development of RNP to xLS procedures with shallow intermediate segment were discussed
- The design method of shallow intermediate segments were proposed based on the assumptions
- Full flight simulator trials confirmed that the method enables to design procedure even in the high temperature condition
- Findings also revealed altitude variations required a buffer
- The revised algorithm will enable the development of the procedures design criteria

Thank you for your attention !

Quoted from :

Sonosuke Fukushima, Ryota Mori, Shinji Saitoh,

"Geometric Approach for RNP Transition to xLS Procedure Design," 36th Digital Avionics Systems Conference, Sept. 2017.